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The stability of the Stewartson layer in a rotating incompressible fluid is investi- 
gated within the framework of a linear theory. The boundary-layer structure of 
the shear layer is correctly taken into account and the effect of viscous dissipation 
on the disturbance is included in the governing equations. The growth rate w2 of 
the disturbance is given as a function of the unified parameter m Ro/(yE*), where 
m, an integer, is the azimuthal component of the wavenumber vector, y the 
radius of the layer, Ro the Rossby number and E the Ekman number. Instability 
occurs when m Ro/(yE*) > 9.5. The time evolution of a growing disturbance is 
given schematically. Comparison of our results with the experiments by Hide & 
Titman shows good agreement. 

1. Introduction 
Recently, Hide & Titman (1967) performed an elaborate experiment on the 

stability of a shear layer in a rotating liquid. They produced the shear layer by 
inserting a circular disk into a rotating flow in a cylindrical tank. The disk rotated 
concentrically with the tank, but with a different angular velocity (see figure 1). 
When the relative difference between the angular velocities of the tank and the 
disk was smaller than a certain critical value, they observed an axisymmetric 
steady configuration. When this critical value was exceeded, however, the free 
shear layer (the Stewartson layer) exhibited an azimuthal distortion. As in the 
case of the Taylor-Proudman column, the distortion did not depend on the axial 
co-ordinate. When the disk rotated faster than the tank, this distortion had a 
regular wavy flow pattern with azimuthal wavenumber m which moved with 
approximately the same angular velocity as the tank. The wavenumber m 
decreased as the relative difference in angular velocities increased. In  the opposite 
case in which the disk rotated slower than the tank, distortion occurred at the 
same absolute value of the relative difference in angular velocities. The flow 
pattern, however, differed from that of the wavy motion, being in the form of an 
off-axis ellipse. Hide & Tidman gave detailed tables of experimental data: the 
apparatus, the configuration, the Ekman number, the Rossby number and 
the wavenumber m a t  which the instability set in. 

Corresponding to this experiment, Busse (1968) and Siegmann (1974) have 
performed linearized analyses of shear-layer instability in a rotating fluid. 
Siegmann also studied nonlinear effects on the basis of Stuart’s method. The 
shear layers they considered were, however, much thicker than the Stewartson 
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(1957) shear layer. This led to the neglect of the effect of dissipation on the 
disturbance, and to oversimplification of the basic flow. 

In  this paper, we study the effect of lateral dissipation on the linear stability 
of the Stewartson layer. For this purpose, we take the exact velocity distribution 
in the Stewartson layer as our basic flow, and apply Hunter’s (1967) boundary- 
layer method of solution to the viscous equation of the disturbances. 

The most interesting aspect of our results is a similarity law by which para- 
nieters in the dispersion equation are combined into the single parameter 
m Ro/yE*, where Ro is the Rossby number, E the Ekman number and y is the 
non-dimensional radius of the Stewartson layer. Instability occurs when this 
parameter exceeds 9.5. As is shown in figure 5 in $6, predictions based on this 
result compare well with Hide & Titman’s experiments. Because of the lineariza- 
tion, however, we failed to predict the asymmetry of the flow with respect to the 
sign of the relative difference between the angular velocities of the disk and the 
tank. 

In  $2  the basic equations are given. I n  $ 3  they are solved using Hunter’s 
boundary-layer method of solution and under an assumption about the behaviour 
of the inviscid solution. I n  $ 4  this assumption is examined to prove the self- 
consistency of our method. In  $ 5  the energy balance for the disturbances is 
discussed. Finally, in $6, numerical results and a discussion are given. 

2. Basic equations and main flow 
Two parallel infinite flat plates rotate around the same vertical axis. The 

distance between the plates is 2H.  There are narrow annular gaps a t  a radius R 
in both plates. The inner parts of the plates, inside these gaps, rotate with the 
same angular velocity Cl- iAQ,  and the outer parts with angular velocity 

+ 4AQ. The space between the plates is filled by viscous incompressible fluid. 
The situation is shown schematically in figure 1. As was discussed by Stewartson 
(1957), the fluid between the inner and outer parts of the plates respectively 
rotates rigidly with the corresponding parts of the plates. Double Stewartson 
layers of thicknesses E-5 and Ef bridge the velocity discontinuity between the 
inner and outer region. Our problem is to study the stability of this shear layer. 

Let us introduce a system of cylindrical co-ordinates (Y, 8, z )  which rotateswith 
angular velocity Q. The origin of the co-ordinates is the point on the rotation 
axis midway between the plates. Position vectors are non-dimensionalized by 
H ,  velocities by +HAL2 and the perturbed pressure by pHRClAQ, where p is the 
density. The dimensionless forms of the linearized basic equations governing 
small disturbances are 

O.q = 0, (2.1) 

(2 .2 )  E*aq/at + Ro{(U. 0)s -I- (4. V) U> + k x q = - Vp + &EAq, 

where 30 = RAQ2/48H, the Rossby number, and E = v/H2Q, the Ekman 
number. I n  these equations, U [ = ( U ,  V ,  W ) ]  is the velocity of the basic flow, 
q[=(u,v,w)] the perturbation velocity, k a unit vector along the axis of 
rotation, p the pressure and v the kinematic viscosity. We assume that E is much 
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FIGURE 1. The schematic representation of  the configuration in (a) Hide & Titman’s 
experiment and (6) in the present paper. 

smaller than unity and that Ro is of order EP. The parameter range of Hide & 
Titman’s experiment is consistent with these assumptions. We have non- 
dimensionalized the time by 20-1Et. This reflects the fact that the phase velocity 
of the disturbance observed in the above experiment was of the same order of 
magnitude as the azimuthal component of the basic flow. 

The flow field is divided into three regions; the E)-layer, the Ea-layer and the 
inviscid region. The inner part of the Ea-layer and the outer part of the inviscid 
region are separated by the &layer. The approximate versions of (2.1) and (2.2) 
in each region are solved subject to Ekman’s compatibility conditions on the 
plates and matching conditions between different regions. Because of the 
homogeneity of these conditions, we arrive a t  a dispersion equation by this 
procedure. The Ekman compatibility conditions on the plates (Greenspan 1968, 
D. 46) are 
I 

(2.3) 

As for the radial boundary conditions, i t  is required that the solutions be finite 
at r = 0 and 00 and that the solutions and their derivatives be continuous across 
the boundaries between the regions. 

The basic flow fields have been studied by many authors (see, for example, 
Stewartson 1957; Hunter 1967; Hashimoto 1975). Their results give 

U = 0, V = T r / y ,  W = 0 (2.4) 
19-2 
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in the inviscid region, 

U = O(Ei), Y = T 1 & e*q +O(EB), W = O(Ef) (2.5) 

U = O(Ei’f), F‘ = Eft< +O(EQ), W = O(E*) (2.6) 

in the Ef-layer and 

in the Etlayer, where the upper and lower signs refer to the inner and outer parts 
of a region respectively, y ( = R/H) is the non-dimensional radius of the free shear 
layer, 7 = E-a(r - y )  and ( = E-*(r - y).  For the sake of definiteness, we assume 
implicitly that the inner parts of the flat plates rotate more slowly than the 
outer parts. The opposite case can be treated changing the sign of Ro. 

3. The Stewartson layer 
The Stewartson layer is composed of two shear layers whose thicknesses are 

of order Ef and E),  respectively. On the basis of the matching between these 
regions, we expand physical quantities in power of E%: 

f = fo + EA-fl + Elrf, + Eaf3 + E* f4 + Ei%f5 + E3f6 + . . . , (3.1) 

wherefis an arbitrary physical quantity. Substitution of (3.1) into (2.1) and (2.2) 
leads to the approximate equations in each region. 

The Ef-layer 

We use carets to denote variables in the Ef-layer and introduce a stretched 
variable 7 defined by 7 = ( r  - y )  E-f. The equations for aj and j3j ( j  = 0 , l  and 2) 
are 

Let us assume that 4, and $ij tend to zero as (7 1 + co. This assumption is related 
to the behaviour of the inviscid flow and will be proved to be self-consistent in 
$4. This gives us $2, = fjj = 0 (j = 0, 1 and 2). For a3, a,, 63, and fj, we have 

o = afi,laz, (3.6) 

where we have used the fact that a, = fj, = 0. From (3.6), (3.4) and ( 3 4 ,  $%, 3, 
and O3 are independent of z. Combining this fact with Ekman’s compatibility 
conditions and (3.3)) we obtain 8, = 0. Using these results we get the equations 
for a,, 4, 8, and &: 

aa, a, i a$, 7 aa, aa, 
a7 7 y ae y2 ae az ’ 
-+-+ + - = o  (3.7) 
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o = aj3,pz, (3.10) 

where /3 = ROE-f. The corresponding Ekman compatibility conditions are 

8, = 5 gaOo/av at z = 5 1. (3.11) 

Inspection of (3.9), (3.8) and (3.10) shows us that $2, is independent of z. Thus 
(3.7) can be integrated with respect to z subject to (3.11). The result of this 
integration and (3.4), (3.5), (3.8) and (3.9) enable us to eliminate 8,, a,, o3 and fj6 

to obtain a single equation for j33:  

(3.12) 

If  we assume a solution of t,he form 

The asymptotic behaviour of the four solutions of (3.14) as Iql-+ao can be 
estimated on the basis of the fact that lpol + 1 in the limit: 

f3-+epq, e-@T, 7 or constant, (3.15) 

where -p2 = 2(iw-&+imp/y),  Rep > 0 when 7 2 0 .  (3.16), (3.17) 

By our assumption after (3.2), the solution which grows exponentially and the 
solution proportional to 7 in the limit are discarded. The two solutions retained 
are 

(3.18) 

The above gives the solutions for 7 < 0,  for which p is defined by (3.16). The 
solutions for 7 > 0 are obtained by changing the signs of /3 and 7 and using the 
definition (3.17) for p. 

The E*-layer 

We use tildes over letters to denote physical quantities in the Etlayer and 
introduce a stretched variable < defined by 5 = ( r -  y)E-*. The equations for 
Gj and pj ( j  = 0,  1 and 2) are 

(3.20) 

Because 2, = 4, = Q2 = $o = = j32 = 0,  we have iij = pj = 0 f o r j  = 0 , 1  and 2. 
Equations (3.20) also hold for G3 and @3 because Go = 0. Thus C3 is independent 
off[ and we obtain the following matching condition: 

“%I- = “%I+, (3.21) 
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where [f], = lim f(r) and [f]- = lim f(r). For s,+,, ai, 8, and fjj+4 ( j  = 0 and 1) 
wehave '++' 7- t -0  

as,,, 1 aai ac. -+- -+2 = 0, a t  y a6 az 
(3.22) 

(3.24) 

afji+,laz = 3 a=ailap. (3.25) 

By eliminating Gj+4 and jij+4 from (3.22)-(3.25), we obtain 

+ a3ajlap + aiz,laz = 0, (3.26) 

aaipz = 4 a3itilap. (3.27) 

Elimination of Cj then yields 

a6tzj lap+ 4 a 2 t z j l a Z 2  = 0. (3.28) 

The Ekman compatibility conditions 

.ii(=?*EbaE,lac at z = & l  (3.29) 

give us Gi = 0 ( j  = 0 and 1) at z = & 1.  The solutions 8, and G1 of (3.28) which 
satisfy these conditions and tend to zero as 161 -+ co are identically zero in the 
E)-layer. Because of this, (3.27) and (3.28) g' ive us 

Ci = aj+bjE+cit2 f o r j  = 0 and 1, (3.30) 

where ai, b, and ci are functions of 8 and t to be determined from matching 
conditions. Matching the solutions in the &layer and in the ES-layer yields the 
following conditions : 

[S,l- = a, = P o l + ,  (3.31) 

6, = 0, C, = 0, (3.32), (3.33) 

and 

The equations for C6, B,, iZz and j i6 are 

(3.34) 

(3.35) 

(3.36) 

(3.37) 

az = afj,/a[, (3.38) 

aa, p7aco aVl - - I afj6 I a%, -+-J -++-u3+u,= -- -+- - 
at 7 Oa8 a< ae 2 

(3.39) 
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where we have used do = d, = C, = 6, = 8, = 0. Because vo = 0 and V, = 5 from 
(2.6), the first three terms on the left-hand side of (3.39) are independent of 6. 
Therefore elimination of ii6 and iie from (3.37)-(3.40) gives us the same set of 
equations as (3.26) and (3.27) for 'u", and 13,. By following the same procedure as 
above, we obtain 

8, = 0, fi, = a,+b,[+c,t2, (3.41), (3.42) 

where a2, b, and c, are functions of0 and t. The corresponding matching conditions 
are 

- 

[32]- = a,2 = [82l+, 

[a8,/aq]- = b, = [aal/a~]+ 
(3.43) 

(3.44) 

and (3.45) 

The matching conditions (3.21), (3.31), (3.35) and (3.45) give us conditions on 
f 3  at 7 = 0: 

(3.46) 

Substituting solutions hitherto obtained into (3.46), and dropping all the terms 
except the first three in (3. 19), we obtain the dispersion equation 

- 64 - 144@ + a) - 224(y2 + a') - 16(y + a) (5y2 -pa + 5a2) - 4(y4 + l4y2a2 + a 4 )  

+ (/A +a) (y - a),(3y2- 2ya + 3a2) - (,u~ + a') (y2- = 0, (3.47) 

where y2= -2(&j)-I 2 + W 7 Y )  (3.48) 

and a2 = - 2(iw - 4 - imply). (3.49) 

Because i t  is prohibitively difficult to get an explicit form of dispersion equation 
taking into account further terms in (3.19), we have not tried it. The coefficients 
in (3.47) are all real, therefore the complex-conjugate pair (y*, a*) satisfies (3.47) 
if (y, a) does. Consequently, if w and imply are eigenvalues, their complex 
conjugates w* and -imply are also eigenvalues. This fact holds not only for (3.47) 
but also for the general form of the dispersion equation. As mentioned in the 
previous section, the dispersion equation in the case in which the inner plates 
rotate faster than the outer plates is obtained by replacing /3 by -,8 in (3.47). 
Thus the eigenvalues in this case are w* and +imply. Another thing to be noted 
is the similarity rule by which the dispersion equation is governed by a single 
parameter mply. The disturbance is unstable if this parameter exceeds 9.5. This 
is demonstrated in figure 2, which shows wi vs. 2rnply according to (3.47). 

4. The inviscid region 
In  this section we investigate the perturbations in the inviscid region and 

verify the assumptions made in $3: that a,, a,, a,, Po, @,, 13, and 8, tend to zero 
as [ql-+co. 
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FIGURE 2. Stability diagram showing the growth rate oi vs. 2rnPlr. 

The inviscid region was treated by Busse for a general basic velocity distribu- 
tion. Here we apply his results to our basic flow (2.4). The equations for qj and 
p j  (j = 0, 1 and 2) are 

v.qj=o, kxq j  = -v$lj, v.qj+, = 0, (4.1)-(4.3) 

aqj/at+P[(uO.v)qj+ (qj*v>uOl + qj+6 = -vpj+,j* (4.4) 

wj = 0, vj = --apj/ar, U .  3 = -+a Pjlas. (4.5) 

(4.6) 

From (4.1), (4.2) and the Ekman compatibility conditions (2.3), we obtain 

I f  we assume pi to be of the form 

for j = 0, 1 and 2, combination of (4.3)-(4.5) and (2.3) gives us 
Pj = Re [ X j  (4 e=P {qme - 411, 
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where use has been made of the fact that the basic flow is a rigid-body rotation. 
The solutions of (4.7) in the inner and outer inviscid regions are 

where cj, c; and ci are constants. Because d jq  = &.? = dit = $it in the Stewartaon 
layer fo r j  = 0,  1 and 2, xi and axj/& must be continuous at r = y. When there 
is a side wall a t  r = rw > y, the boundary condition on this side wall is ur = 0, 
that is xj = 0 at r = rw. These three conditions combined with (4.8) and (4.9) 
give us xj = 0 in the inviscid region. If there is no side wall, the first term rm in 
(4.9) is omitted. Again the solution xj = 0 results from the first two conditions. 
The fact that xi = 0 in the inviscid region proves the self-consistency of the 
assumptions made in $3.  

5. Energy equations 
Let us consider the energy balance for the disturbance. The largest magnitude 

of the disturbance velocity is of order Ea in the inviscid region and of order unity 
in the Ea-layer and the &layer. Thus the total kinetic energy of the disturbance 
is of order E* in the inviscid region, of order Ea in the El-layer and of order E) 
in the E)-layer. Therefore we can restrict ourselves to the @-layer. Multiplication 
of (3.9) by a. and integration with respect to y over the Ef-layer gives us the 
energy equation of the disturbance: 

'$13 wvo = 0, (5.1) 
l a280 1 ( ae y2 a0 

+ i&+----- 

where integration with respect to x is not necessary because each term in (3.9) 
is independent of z. By performing partial integration and using (3.7), (3.8) and 
(3. lo), we obtain the simpler expression 

where bars over letters indicate the average with respect to 8. The first, second 
and third terms on the right-hand side of (5.2) are the contributions from the 
main shear flow, the viscous dissipation in the Ekman layers and the viscous 
dissipation in the E*-layer, respectively. In  terms of f 3 ,  (5.2) becomes 

1 (A?:; + 2Wr1, (5.3) 2 ra3 2 -a3 

7r - - (f& + 2;:) dy - - e2mi t  

where the subscripts R and I denote the real and the imaginary parts of R, 
respectively, and the primes indicate differentiation with respect to y. Figure 3 
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FIGURE 3. The ratios of the viscous dissipation terms in theEI-layer (the third term on the 
right-hand side of (5.2) ; solid curves) and in the Ekman layer (the second term; dashed 
curves) to the energy contribution from the main flow (the third term) as functions of 
2mP/y. For 2mP/y > 26.6, mi lias two possible values. Here the upper branch corresponds 
to the larger value of wi while the lower branch corresponds to the smaller value of wi .  

gives the relative contributions of each dissipative term in comparison with 
that of the main shear flow. Figure 4 gives distribution in 7 space of each inte- 
grand on the right-hand side of (5.3) for a case of instability: 2mP/y = 20. 

6. Concluding remarks 
As we noted a t  the end of 3 3, we have a similarity law by which the parameters 

m, y and P in the dispersion equation combine to form the single parameter 
mP/y. The Stewartson layer becomes unstable for 2rnply > 19. To compare our 
results with the experimental data of Hide & Titman, we must take into account 
the fact that their Rossby number eHT and Ekman number E,, are different 
from our Ro and E.  Using the velocity distribution of the steady flow, we take 
&d’ as our characteristic length H and $Q, + $0, (i.e.&[t(Q, + Q,) + a,]) as our 
angular velocity Q, where d’ is the distance between the lower surface of the 
disk and the bottom of the tank, and Q, and Q, the angular velocities of the tank 
and the disk, respectively, in Hide & Titman’s experiment (see figure 1 ) .  This 
gives 

RO = yeHT/2(4-8*~), E = 4 y 2 E ~ , / ( 4 - € ~ * ) .  (6 .1)  
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Combining these, we get 

uur crixicai reiaxion zmply = Gnus corresponas 50 me ~oiiowirig relacion 
between FHT and E,T: 

log,, cHT = log,, 7 6 y / m  - 0.5 log,, Egk. (6.3) 

Prom table A 1 in the Hide & Titman's paper, which gives experimental data 
determining the critical relation between EHT andEHT, we can see that log,, 7 6 y l m  
is within the range 

0.76 < 1og1,76y/m < 1.16. (6.4) 

Relation (6.3) subject to (6.4) agrees well with the empirical relation given by 
Hide & Titman: 

10g,,~HF = 1.225 5 0.055 - (0.586 5 0.013) log,, E&$. 16.5) 

Tables 1 and 2 give the values of 2mp/y calculated from the experimental data 
of Hide & Titman, who observed the instability in 127 different situations. 
Figure 5 shows the observed frequency distribution of instabilities us. 2mP/y to 
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a (cm) 

2-5 

3.75 

5-00 

8-25 

7.5 

2-24 
3.58 
5.2 
7-1 1 
8.46 

5.17 
7.7 

11-30 
15.7 
18.8 

8.37 
13-4 
17.6 
27-7 
3 4 4  

13.5 
21.2 
31.4 
43.0 
51.6 

21.7 
30.2 
44.5 
61.7 
74.5 

0.218 
0.184 
0.125 
0.104 
0.082 

0.127 
0.109 
0-083 
0.074 
0.063 

0.095 
0.073 
0.063 
0.053 
0.045 

0.077 
0.059 
0.046 
0.039 
0.035 

0.058 
0.038 
0.039 
0.032 
0.028 

m 

2 
2 
2 
3 
3 

2 
3 
3 
3 
4 

3 
3 
4 
4 
5 

3 
4 
5 
5 
5 

4 
5 
5 
6 
6 

P 
1.33 
1.41 
1,14 
1-11 
0.95 

1.16 
1.21 
1.11 
1.17 
1.09 

1.10 
1.07 
1.05 
1.11 
1.04 

1.13 
1.08 
1.02 
1-02 
1 .oo 
1.08 
0.83 
1-03 
1.00 
0.96 

2Plr  

11.67 
12.40 
10.07 

9.77 
8.38 

6.81 
7.1 1 
6.54 
6.86 
6.39 

4.84 
4.69 
4.63 
4.88 
4.59 

3.97 
3.81 
3.61 
3.58 
3-51 

3.16 
2.43 
3.03 
2.93 
2.81 

2mPly 

23.34 
24.80 
20.15 
29.32 
25.15 

13.61 
21.34 
19.62 
20.59 
25.54 

14.51 
14.07 
18.53 
19.54 
22.95 

11.92 
15.23 
18.04 
17.88 
17.57 

12.62 
12.16 
15.16 
17.56 
16.87 

TABLE 1. All the /I, 2P/y and 2rnP/y determined from the experimental data 
in table A 1 of Hide & Titman. 

give a clear view of the correspondence between our result and the experiment. 
We see that most of the instabilities observed lie in our unstable region. We may 
conclude, on the one hand, that the present theory explains why disturbances 
with wavenumber smaller than a certain critical value m* were not observed 
experimentally. From the stability diagram in figure 2,  on the other hand, the 
larger the wavenumber m, the larger is the growth rate. In  the experiment, 
disturbances with wavenumber larger than a certain threshold value did not 
appear. The same discrepancy arises also in Siegmann’s theory, in which wi 
increases in proportion to (m2 - 1)i .  In  relation to this point, Busse concluded 
that the wavelength of the most unstable mode is of the same order of magnitude 
as the shear-layer width. He obtained this result, however, in the limit of an 
infinitesimally thin shear layer. Because his theory becomes invalid in this limit, 
his conclusion must be re-examined. For example, we must take into account the 
effect of derivatives with respect to the azimuthal variable in the viscous terms 
of the basic equations. 

No disturbance with m = 1 was observed in the experiment. According to 
Busse and Siegmann, this disturbance is stable regardless of the values Ro and E.  
Our result shows that this disturbance can be unstable when Ply > 9-5. Thus the 
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a (cm) x 10-~ 

2-5 5.55 
5.6 
8.58 
8.67 
8.76 

3.75 7.86 
7.95 
8.00 
8.05 
8.10 

10.80 
10.82 
10.83 
10.95 
12.2 
12.3 
12.4 
12.5 
12.6 
19.1 
19.2 
19.25 
19.35 
19.4 
19.5 
19.6 
19.7 

5.00 13-5 
13.6 
13.8 
13.85 
14.05 
20.5 
20.6 
20.7 
20.8 
21.0 
21.1 
21.2 
21.3 
21.4 
27-1 
27.2 
27.25 
27.4 
27.5 
27.6 
27.8 
28.0 
28.1 
28.3 
28.5 

EHT 

0.139 
0.157 
0.113 
0.133 
0.150 

0.111 
0.129 
0.136 
0.149 
0.161 
0.1 12 
0.115 
0.117 
0.137 
0.089 
0.098 
0.112 
0.128 
0,142 
0.0735 
0.083 
0.090 
0.0975 
0.102 
0.1125 
0.1205 
0.129 

0.0795 
0.0915 
0.121 
0.126 
0.149 
0.084 
0.095 
0.102 
0.104 
0.113 
0.118 
0.129 
0.138 
0.152 
0.053 
0.057 
0.0635 
0.0752 
0.0855 
0.0885 
0.102 
0.114 
0.125 
0.138 
0.1 48 

Ira 

2 
2 
3 
2 
2 

3 
2 (3) 
2 i 3 j  
2 
2 
3 
3?  
2 (3) 
2 
3 
3 
3 
2 (3) 
2 
3? 
3 
3 
3 
3 
3 
2 (3) 
2 

3 
3 
3 

2 
3 
3 
3 
3 
3 

2 (3) 

2 (3) 
2 (3) 
2 
2 
4 
4 
4 
3 
3 
3 
3 
3 
2 (3) 
2 (3) 
2 

P 2PlY 

1.32 11.59 
1.50 13.19 
1.33 11.68 
1.57 13.85 
1.79 15.74 

1.25 7.32 
1.46 8.57 
1-55 9.08 
1.70 9.99 
1.85 10.85 
1.48 8.66 
1 a52 8.90 
1.54 9.06 
1-82 10.70 
1.24 7.29 
1.38 8.07 
1.58 9-28 
1.82 10,67 
2.03 11.90 
1.28 7.52 
1.45 8-52 
1.58 9.26 
1.72 10.07 
1.80 10-55 
1.99 11.69 
2.14 12.56 
2.30 13.50 

1.17 5.13 
1.35 5.94 
1.80 7.94 
1.88 8.29 
2-25 9.90 
1-52 6-69 
1.72 7-59 
1.86 8.18 
1.90 8.36 
2.08 9.14 
2.17 9.57 
2.39 10.50 
2.56 11.27 
2.83 12.47 
1.10 4.83 
1.18 5.21 
1.32 5.81 
1.57 6.91 
1.79 7.88 
1.86 8.18 
2.15 9.48 
2.42 10.64 
2.66 11.71 
2.95 12.99 
3.18 14.00 

[Table 2 continue 

2d1y 
23.19 
26.37 
35.04 
27.71 
31.48 

21.96 
17.15 
18.15 
19.98 
21.69 
25.97 
26.70 
18.12 
21.40 
21.87 
24.21 
27.83 
21.33 
23.80 
22.56 
25.57 
27.79 
30.21 
31.66 
35.06 
25.12 
26.99 

15.39 
17.81 
23.82 
16.57 
19.80 
20.06 
22.77 
24.53 
25,08 
27.41 
19.14 
21.00 
22.55 
24.94 
19.32 
20.83 
23.25 
20.73 
23.65 
24.53 
28.43 
31.93 
23.42 
25.99 
28.01 

d on next page] 
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a (cm) E& x 10-~  

34.5 
34.9 
35.0 
35.0 
35.1 
35.5 
35.6 
35.8 
35.9 
36-1 
36.2 
36.4 

6.25 17-25 
17.35 
17.4 
17.55 
17.7 
17-85 
43.1 
43.8 
44.0 
44.1 
44.3 
44.5 
44.8 
45.1 
45.2 
45.6 

7.50 62.0 
62.1 
62.5 
62.7 
62.8 
63.3 
63.7 
64.4 
64.6 
64.9 
76.6 
77.0 
77.1 
77.5 
78.0 
78.1 
78.4 
78.8 
79.3 
79.5 
80.1 
81.2 

~ H T  

0.0503 
0.0593 
0.0675 
0.068 
0.076 
0.094 
0.098 
0.112 
0.1175 
0.1275 
0.1315 
0.141 

0-078 
0.088 
0.095 
0.1085 
0.129 
0- 142 
0.0441 
0.0507 
0.061 
0.0669 
0.0752 
0.0908 
0.0985 
0.1095 
0.116 
0.132 

0.048 
0.0515 
0.0625 
0.0677 
0.0695 
0.0837 
0.097 1 
0.122 
0.1295 
0.136 
0.0295 
0.0345 
0.0418 
0-0532 
0.0652 
0.0662 
0.0707 
0.0775 
0.0905 
0.1035 
0.118 
0.1395 

rn 

5 
4 
3 (4) 
3 
3 
3 
3 
3 
2 (3) 
2 (3) 
2 
2 

3 
3 
3 
3 
3 
2 
5 
4 
4 

3 
3 
3 
3 
3 
2 

5 
4 (5) 
4 
4 
3 (4) 
3 
3 
2 (3) 
2 (3) 
2 
6 
5 
5 
4 
4 

3 
3 
3 
3 
3 
2 

3 (4) 

3 (4) 

P 
1.18 
1-40 
1.59 
1.60 
1.80 
2.24 
2.34 
2.69 
2.82 
3.08 
3.18 
3.42 

1.29 
1.47 
1.59 
1.82 
2.18 
2.41 
1.15 
1.33 
1.61 
1.77 
2.00 
2.42 
2.64 
2.95 
3.13 
3.58 

1.50 
1.61 
1.97 
2.14 
2.20 
2.66 
3.10 
3.93 
4.18 
4.41 
1.02 
1-20 
1.46 
1.86 
2.29 
2.33 
2.50 
2.75 
3-22 
3.70 
4,24 
5.06 

2PlY 

5.17 
6.14 
7.00 
7.06 
7.91 
9.86 

10-30 
11.82 
12.43 
13.54 
13.99 
15.06 

4-55 
5.16 
5-58 
6.41 
7.68 
8.50 
4.05 
4.70 
5.67 
6.23 
7.03 
8.53 
9.29 

10.37 
11.01 
12.61 

4.41 
4.74 
5.77 
6.27 
6.44 
7.80 
9.10 

11.53 
12.27 
12.93 
3-00 
3.53 
4.28 
5.47 
6.73 
6,84 
7.32 
8-08 
9.45 

10.84 
12.43 
14.84 

2mp1r 
25.86 
24.55 
21.01 
21.17 
23.72 
29.57 
30.89 
35.47 
24.86 
27.08 
27.99 
30.13 

13-66 
15.47 
16.74 
19.24 
23.03 
17.00 
20.25 
18.79 
22-69 
18.70 
21.09 
25.58 
27.87 
31.12 
33.04 
25.22 

22-04 
18.95 
23.10 
25.08 
19.33 
23.41 
27.29 
23.06 
24.54 
25.85 
18.03 
17.63 
21.39 
21.87 
26.93 
20.52 
21.97 
24.17 
28.36 
32.52 
37.29 
29.67 

TABLE 2. All the p, 2Ply and 2mply determined from the experimental data 
in table A 2 of Hide & Titman 
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FIGURE 5. The observed instability frequency N vs. 2rnPI.y on the basis of the experimenta1 

data of Hide & Titman. 

e 

- 90" 
-2 - 1  0 1 2 

7 

FIGURE ( 6  a). For legend see page 305. 
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(b) 
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FIGURE 6. Distortion with time of a line of particles in the Ed-layer for the case mi = 1, 
0, = -6.98, y = 1, na = 4 and p = -2.5.  Equi-vorticity lines of the disturbance are 
also drawn. (a)  t = 0. ( b )  t = 0.5. (c) 1 = 1.0. (d) t = 1.5. ( e )  t = 2.0. 
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only thing we can say is that the disturbance with m = 1 is stable in the parameter 
range of Hide & Titman’s experiment (see table 1). 

An interesting phenomenon observed in the experiment is the asymmetry of 
the flow with respect to the sign of the angular-velocity difference between the 
disk and the tank. As mentioned at the end of 5 3, the solutions of the dispersion 
equation are symmetric with respect to the sign of the angular-velocity difference. 
The observed asymmetry may be explained by a nonlinear effect. Hide & Titman 
noted that certain details of the flow structure in the corner region, in which the 
free shear layer meets the Ekman layers, plays an important role in this 
asymmetry. 

We must mention that the details of the velocity distribution in the Stewartson 
layer in the experiment are different from those in this paper. In  the experiment, 
the Stewartson layer was generated by differential rotation of a disk in a cylin- 
drical tank. There thus existed an axial flow from one side of the disk to the other 
through the corner region of the disk. This gave different matching conditions 
through the Etlayer. From the theoretical point of view, we think it desirable 
t.0 perform an experiment with the same configuration as that in this paper. 

Finally, in figure 6, the time distortion of a line of particles in the Ei-layer is 
given. At an, initial instant, uniformly spaced particles are aligned along the 
line 7 = 0. We can see a gradual folding up of this line of particles around the 
vorticity centre of the disturbance. 

The author wishes to thank Professor Takeo Sakurai for his critical discussion 
of the manuscript. The numerical calculations were performed on the FACOM 
230-60 electronic computer of the Data Processing Centre of Kyoto University. 
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